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Presentation

• PPARG Modulators devoid of classical Agonism

– Insulin sensitizers and nuclear receptors

– PTM control of NR Signaling and SR1664

– Structural aspects of SR1664 Action

– Potential to develop novel non-agonists PPARG 

modulators for use in the clinic?



Discovery of Insulin Sensitizing TZDs
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Classical Model of NR Signaling
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Proposed Mechanism of Action of TZDs
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PPARG:RXR Crystal Structure
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TZDs Run into Problems

• Reported in vivo efficacy for Alzheimer’s Disease, 

Cancer, Atherosclerosis, Browning of fat, 

Inflammation, etc.  

2006: $2.5 Billion Sales

$
1999: FDA Approval 2007: Safety Concerns

2010: FDA Warning

Heart Failure, Weight 

Gain, Bone Density



PPARG Ligands and Insulin Resistance

Partial loss of function mutations in PPARγ in humans

unambiguously cause severe insulin resistance. ButB.

PPARγ agonists improve insulin-resistance and diabetes, 

but most PPARγ target genes are already fully “on”

in obesity – and typically there is no defect in receptor.

Some PPARγ ligands with poor agonist activity still have 

marked anti-diabetic actions (MRL24, Mbx-102, INT131).



The PPARG Paradox

MRL24 

Rosiglitazone

Paradox: If agonism of PPARG drives adipokine expression then 

why are partial agonists equally efficacious as full agonists?

Glucose Tolerance TestPPARG Transactivation Assay

Choi et al. Nature 2010



Questions about Partial Agonists

�Do PAs regulate expression of adipokines via a 

different mechanism than TZDs?

�Do PAs afford separation of insulin sensitization 

pathways from pro-adipogenic, fluid 

expansion/retention, cardiohypertrophy?

Insulin sensitization
Weight gain

Hemodilution

CV events

Reduced bone density



PTM status impacts PPARG function

Ligands bind to PPARG 

and interfere with the 

ability of kinase(s) to 

PO3 the receptor 

Choi et al Nature 2010
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Glucose Tolerance TestPPARG Transactivation Assay

Choi et al. Nature 2010

PTM status impacts PPARG function
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PTM Control of NR Signaling

Functional Interactions

Ligand – AF2

Ligand – dimer partner

AF1- AF2

Ligand – AF1

Ligand – PTM

PTM – co-regulator
DNA – co-regulator

PTM – DNA

Ligand – DNA

Ligand-mediated translocation

TFs

SUMO

Combinatorial Control of NR Function

Goal of our lab – to develop functionally selective 

modulators of nuclear receptors



PPARG LBD PTMs

K293

K268

K365

S273

S273: phosphorylation  correlates with 

obese gene expression.

Choi et al. Nature 2010

K365: SUMOylation leads to repression 

of NFkB target genes. 

Pascual et al. Nature 2005 

K268 & K293: ‘Deacetylation of PPPARG 

on Lys293 is required to recruit 

coactivator Prdm16, while 

deacetylation on Lys268 and Lys293 is

required to clear corepressor NCoR.’

Qiang et al. Cell 2012

K293: ‘Ser273 phosphorylation 

correlates with Lys293 acetylation’

Qiang et al. Cell 2012 



Paradigm Shift? 

Modulate PTMs and not Receptor Activation

Rosi 1664
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Can Agonism and Blocking S273-P be 

separated?
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Ligand Discovery

Choi et al Nature 2011
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Oil Red

SR1664 effect on Adipocytes

D
M
S
O

R
o
s
i

S
R
1
6
6
4

S
R
1
8
2
4

S
R
2
2
2
7

0

2

4

6

8

10

12 **

**

**

R
e
la
ti
v
e
 e
x
p
re
s
s
io
n
 a
P
2

D
M
S
O

R
o
s
i

S
R
1
6
6
4

S
R
1
8
2
4

S
R
2
2
2
7

0

2

4

6

8

10

12

**

***

R
e
la
ti
v
e
 e
x
p
re
s
s
io
n
 P
P
A
R
γ

D
M
S
O

R
o
s
i

S
R
1
6
6
4

S
R
1
8
2
4

S
R
2
2
2
7

0

1

2

3

4

** **

O
il
 R
e
d
 O
 Q
u
a
n
ti
fi
c
a
ti
o
n
 (
5
0
0
n
m
)

Oil Red Staining



SR1664 and Analogs on Bone

MC3T3



SR1664 and Analogs on Bone

ALP activity

uU/min p Fold change

DMSO 3.80

Full Agonist RSG/10uM 0.54 1.0E-07 0.141

RSG/1uM 0.69 2.4E-07 0.182

Partial Agonist 1824/10uM 5.08 0.01 1.337

1824/1uM 4.78 0.02 1.258

Full Agonist 2227/10uM 1.16 0.00 0.305

2227/1uM 2.25 0.05 0.593

Partial Agonist MRL24/10uM 2.19 0.08 0.576

MRL24/1uM 2.02 0.01 0.533

Non-Agonist 1664/10uM 4.66 0.56 1.226

1664/1uM 4.54 0.32 1.194

Non-Agonist 2539/10uM 4.14 0.71 1.089

2539/1uM 3.54 0.78 0.933

Beata Lecka-Czernik in U-

33/PPARg2 cells

MC3T3

Adipogenesis only seen with rosi

activity of pro-osteoblastic signaling – repression% 

Rosi 50%

SR1824 30%

SR2227 30%

MRL24 20%

SR1664 ~2%

SR2539 0%



Inhibition of inflammatory cytokinesInhibition of inflammatory cytokines

• PPARγ non agonist (SR1664) inhibited inflammatory cytokines as well as TZD

• Different scaffold SR1931 did not  - compound is a weak binding non-agonist

LPS- RAW264.7 cells

- preincubation with compounds for 18 hrs

- then LPS stimulation for 6 hrs



PTM status impacts PPARG function: 

How?

PPARγ KO MEFs

PPARγWT PPARγS273A

treat cells with TNFα

isolate PPARγ-binding proteins
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Thrap3 is a factor that binds to PPARG when

S273 is phosphorylated.

Functional studies ongoing.



SR1664 POC

CoAct(x)

PPRE                                            target gene
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PPARG target genes
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Crystal Structure of PPARG:SR1664

• No Large Changes in Global Fold

• So what is SR1664 doing to the 

receptor? Rosiglitazone structure* = green

SR1664 structure = grey *PDB:2PRG

SR1664 stabilizes 

the β-sheet region

SR1664 Abrogates 

full agonist H-Bonds

AF2



Structure of Enantiomers SR1663 & SR1664

SR1663:

Partial Agonist

SR1664:

Non Agonist
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HDX Analysis of Proteins

H� D Exchange

D2O incubationProtein

Structural
Fluctuation

• Protein conformational mobility influences rate of 

amide H atoms to exchange with solvent D atoms.

• Solution based fully automated system; LC-MS 

LTQ-Orbitrap with ETD to combine bottom-up 

HDX with ETD sub-localization.



Differential HDX Work Flow

Chalmers et al JBT 2007

Chalmers et al Exp Rev Prot 2011



HDX Profiling of Ligands



HDX Differentiates Functionally Distinct 

Enantiomers SR1663 & SR1664
SR1663 SR1664Rosiglitazone
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HDX Differentiates Functionally Distinct 

Enantiomers SR1663 & SR1664
SR1663 SR1664Rosiglitazone
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HDX Differentiates Functionally Distinct 

Enantiomers SR1663 & SR1664
SR1663 SR1664Rosiglitazone
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Ligand Size and Contacts are Critical
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SR2536 Reveals Cause of H12 Stabilization – ‘Flipping’



SR1664 Mechanism of Action
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PPARG Co-Regulator Binding
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SR1664 Mechanism of Action

T447F Binding Assay

Rosi Dose Response MRL24 Dose Response



Differing Effects of PPARγ Ligands on RXRα

%D+50 -50

RXRα LBD PPARγ LBD

Rosiglitazone

SR1664
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Summary of Agonism SAR

• PPARG Paradigm has changed to development of ‘Non-

agonist’ ligands that modulate PTMs. 

• HDX allows us to differentiate SR1663 & SR1664 which look 

identical in static crystal structure but are functionally diverse.

• Degree of H12 stabilization measured by HDX correlates 

with activity, H3 stabilization correlates with affinity.

• Rosi & SR1664 have different effects on RXRα dynamics 

which may indicate altered heterodimer affinity/interaction.



Summary of SR1664
• .. is a potent binder to PPARG – Kd similar to rosiglitazone.

• .. lacks classical AF2 driven agonism – completely inactive in PPRE:Luc 

assays and no alteration of agonist genes in vivo.

• .. blocks S273-P in cells and in vivo and is anti-diabetic with improved AE 

profile versus TZDs.

• .. is an antagonist of natural ligand but agonist of S273-P repressed gene 

set. The compound disrupts receptor and co-receptor (RXR) conformational 

dynamics interfering with binding of CoA or release of CoR.

• .. has poor PK and solubility. Some formulations of the compound are toxic.

• We have SAR on partial agonist to non-agonists with over 20 unique non-

agonist compounds to date. We have some insight into the molecular 

mechanism.

• Questions  – will non-agonists have similar anti-inflammatory properties as 

TZDs in vivo?  TZDs brown fat, and partial and non-agonists do not – will 

this limit their efficacy? 



SR1664

Rosi 1664
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Lead Optimization



Lead Optimization
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Lead Optimization
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Summary

PPARG – Demonstrated that PO3 of PPARG at S273 controls a subset 

of target genes that are dysregulated in obesity (Nature 2010). This led 

to the discovery of novel modulators that bind to PPARG without 

inducing AF2-dependent agonism (passive antagonism). These 

compounds block S273-P and they are efficacious in diabetic mice 

(Nature 2011).  But will this be enough for robust efficacy, and can this 

scaffold be optimized for appropriate pharmaceutical properties?
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